skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Zongshan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We develop a 3‐D isotropic shear velocity model for the Alaska subduction zone using data from seafloor and land‐based seismographs to investigate along‐strike variations in structure. By applying ambient noise and teleseismic Helmholtz tomography, we derive Rayleigh wave group and phase velocity dispersion maps, then invert them for shear velocity structure using a Bayesian Monte Carlo algorithm. For land‐based stations, we perform a joint inversion of receiver functions and dispersion curves. The forearc crust is relatively thick (35–42 km) and has reduced lower crustal velocities beneath the Kodiak and Semidi segments, which may promote higher seismic coupling. Bristol Bay Basin crust is relatively thin and has a high‐velocity lower layer, suggesting a dense mafic lower crust emplaced by the rifting processes. The incoming plate shows low uppermost mantle velocities, indicating serpentinization. This hydration is more pronounced in the Shumagin segment, with greater velocity reduction extending to 18 ± 3 km depth, compared to the Semidi segment, showing smaller reductions extending to 14 ± 3 km depth. Our estimates of percent serpentinization from VSreduction and VP/VSare larger than those determined using VPreduction in prior studies, likely due to water in cracks affecting VSmore than VP. Revised estimates of serpentinization show that more water subducts than previous studies, and that twice as much mantle water is subducted in the Shumagin segment compared to the Semidi segment. Together with estimates from other subduction zones, the results indicate a wide variation in subducted mantle water between different subduction segments. 
    more » « less
  2. Abstract The Alaska Amphibious Community Seismic Experiment (AACSE) is a shoreline-crossing passive- and active-source seismic experiment that took place from May 2018 through August 2019 along an ∼700  km long section of the Aleutian subduction zone spanning Kodiak Island and the Alaska Peninsula. The experiment featured 105 broadband seismometers; 30 were deployed onshore, and 75 were deployed offshore in Ocean Bottom Seismometer (OBS) packages. Additional strong-motion instruments were also deployed at six onshore seismic sites. Offshore OBS stretched from the outer rise across the trench to the shelf. OBSs in shallow water (<262  m depth) were deployed with a trawl-resistant shield, and deeper OBSs were unshielded. Additionally, a number of OBS-mounted strong-motion instruments, differential and absolute pressure gauges, hydrophones, and temperature and salinity sensors were deployed. OBSs were deployed on two cruises of the R/V Sikuliaq in May and July 2018 and retrieved on two cruises aboard the R/V Sikuliaq and R/V Langseth in August–September 2019. A complementary 398-instrument nodal seismometer array was deployed on Kodiak Island for four weeks in May–June 2019, and an active-source seismic survey on the R/V Langseth was arranged in June 2019 to shoot into the AACSE broadband network and the nodes. Additional underway data from cruises include seafloor bathymetry and sub-bottom profiles, with extra data collected near the rupture zone of the 2018 Mw 7.9 offshore-Kodiak earthquake. The AACSE network was deployed simultaneously with the EarthScope Transportable Array (TA) in Alaska, effectively densifying and extending the TA offshore in the region of the Alaska Peninsula. AACSE is a community experiment, and all data were made available publicly as soon as feasible in appropriate repositories. 
    more » « less